Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 108
Фильтр
Добавить фильтры

Годовой диапазон
1.
2.
Front Immunol ; 14: 1154626, 2023.
Статья в английский | MEDLINE | ID: covidwho-20245328

Реферат

Recently, a large number of experimenters have found that the pathogenesis of Parkinson's disease may be related to the gut microbiome and proposed the microbiome-gut-brain axis. Studies have shown that Toll-like receptors, especially Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4), are key mediators of gut homeostasis. In addition to their established role in innate immunity throughout the body, research is increasingly showing that the Toll-like receptor 2 and Toll-like receptor 4 signaling pathways shape the development and function of the gut and enteric nervous system. Notably, Toll-like receptor 2 and Toll-like receptor 4 are dysregulated in Parkinson's disease patients and may therefore be identified as the core of early gut dysfunction in Parkinson's disease. To better understand the contribution of Toll-like receptor 2 and Toll-like receptor 4 dysfunction in the gut to early α-synuclein aggregation, we discussed the structural function of Toll-like receptor 2 and Toll-like receptor 4 and signal transduction of Toll-like receptor 2 and Toll-like receptor 4 in Parkinson's disease by reviewing clinical, animal models, and in vitro studies. We also present a conceptual model of the pathogenesis of Parkinson's disease, in which microbial dysbiosis alters the gut barrier as well as the Toll-like receptor 2 and Toll-like receptor 4 signaling pathways, ultimately leading to a positive feedback loop for chronic gut dysfunction, promoting α-synuclein aggregation in the gut and vagus nerve.


Тема - темы
Parkinson Disease , Animals , Parkinson Disease/pathology , alpha-Synuclein/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Brain-Gut Axis , Toll-Like Receptors/metabolism
3.
mBio ; : e0088923, 2023 Jun 09.
Статья в английский | MEDLINE | ID: covidwho-20244072

Реферат

Viruses targeting mammalian cells can indirectly alter the gut microbiota, potentially compounding their phenotypic effects. Multiple studies have observed a disrupted gut microbiota in severe cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that require hospitalization. Yet, despite demographic shifts in disease severity resulting in a large and continuing burden of non-hospitalized infections, we still know very little about the impact of mild SARS-CoV-2 infection on the gut microbiota in the outpatient setting. To address this knowledge gap, we longitudinally sampled 14 SARS-CoV-2-positive subjects who remained outpatient and 4 household controls. SARS-CoV-2 cases exhibited a significantly less stable gut microbiota relative to controls. These results were confirmed and extended in the K18-humanized angiotensin-converting enzyme 2 mouse model, which is susceptible to SARS-CoV-2 infection. All of the tested SARS-CoV-2 variants significantly disrupted the mouse gut microbiota, including USA-WA1/2020 (the original variant detected in the USA), Delta, and Omicron. Surprisingly, despite the fact that the Omicron variant caused the least severe symptoms in mice, it destabilized the gut microbiota and led to a significant depletion in Akkermansia muciniphila. Furthermore, exposure of wild-type C57BL/6J mice to SARS-CoV-2 disrupted the gut microbiota in the absence of severe lung pathology.IMPORTANCETaken together, our results demonstrate that even mild cases of SARS-CoV-2 can disrupt gut microbial ecology. Our findings in non-hospitalized individuals are consistent with studies of hospitalized patients, in that reproducible shifts in gut microbial taxonomic abundance in response to SARS-CoV-2 have been difficult to identify. Instead, we report a long-lasting instability in the gut microbiota. Surprisingly, our mouse experiments revealed an impact of the Omicron variant, despite producing the least severe symptoms in genetically susceptible mice, suggesting that despite the continued evolution of SARS-CoV-2, it has retained its ability to perturb the intestinal mucosa. These results will hopefully renew efforts to study the mechanisms through which Omicron and future SARS-CoV-2 variants alter gastrointestinal physiology, while also considering the potentially broad consequences of SARS-CoV-2-induced microbiota instability for host health and disease.

4.
Gut Pathog ; 15(1): 21, 2023 May 09.
Статья в английский | MEDLINE | ID: covidwho-2325712

Реферат

Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.

5.
BMC Genomics ; 24(1): 269, 2023 May 19.
Статья в английский | MEDLINE | ID: covidwho-2324467

Реферат

BACKGROUND: Seagull as a migratory wild bird has become most popular species in southwest China since 1980s. Previously, we analyzed the gut microbiota and intestinal pathogenic bacteria configuration for this species by using 16S rRNA sequencing and culture methods. To continue in-depth research on the gut microbiome of migratory seagulls, the metagenomics, DNA virome and RNA virome were both investigated for their gut microbial communities of abundance and diversity in this study. RESULTS: The metagenomics results showed 99.72% of total species was bacteria, followed by viruses, fungi, archaea and eukaryota. In particular, Shigella sonnei, Escherichia albertii, Klebsiella pneumonia, Salmonella enterica and Shigella flexneri were the top distributed taxa at species level. PCoA, NMDS, and statistics indicated some drug resistant genes, such as adeL, evgS, tetA, PmrF, and evgA accumulated as time went by from November to January of the next year, and most of these genes were antibiotic efflux. DNA virome composition demonstrated that Caudovirales was the most abundance virus, followed by Cirlivirales, Geplafuvirales, Petitvirales and Piccovirales. Most of these phages corresponded to Enterobacteriaceae and Campylobacteriaceae bacterial hosts respectively. Caliciviridae, Coronaviridae and Picornaviridae were the top distributed RNA virome at family level of this migratory animal. Phylogenetic analysis indicated the sequences of contigs of Gammacoronavirus and Deltacoronavirus had highly similarity with some coronavirus references. CONCLUSIONS: In general, the characteristics of gut microbiome of migratory seagulls were closely related to human activities, and multiomics still revealed the potential public risk to human health.


Тема - темы
Gastrointestinal Microbiome , Viruses , Animals , Humans , Gastrointestinal Microbiome/genetics , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Viruses/genetics , Bacteria/genetics , DNA
6.
Gut Pathog ; 15(1): 22, 2023 May 10.
Статья в английский | MEDLINE | ID: covidwho-2319741

Реферат

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is associated with systemic hyper-inflammation. An adaptive interaction between gut microbiota and host immune systems is important for intestinal homeostasis and systemic immune regulation. The association of gut microbial composition and functions with COVID-19 disease severity is sparse, especially in India. We analysed faecal microbial diversity and abundances in a cohort of Indian COVID-19 patients to identify key signatures in the gut microbial ecology in patients with severe COVID-19 disease as well as in response to different therapies. The composition of the gut microbiome was characterized using 16Sr RNA gene sequences of genomic DNA extracted from faecal samples of 52 COVID-19 patients. Metabolic pathways across the groups were predicted using PICRUSt2. All statistical analyses were done using Vegan in the R environment. Plasma cytokine abundance at recruitment was measured in a multiplex assay. RESULTS: The gut microbiome composition of mild and severe patients was found to be significantly different. Immunomodulatory commensals, viz. Lachnospiraceae family members and Bifidobacteria producing butyrate and short-chain fatty acids (SCFAs), were under represented in patients with severe COVID-19, with an increased abundance of opportunistic pathogens like Eggerthella. The higher abundance of Lachnoclostridium in severe disease was reduced in response to convalescent plasma therapy. Specific microbial genera showed distinctive trends in enriched metabolic pathways, strong correlations with blood plasma cytokine levels, and associative link to disease outcomes. CONCLUSION: Our study indicates that, along with SARS-CoV-2, a dysbiotic gut microbial community may also play an important role in COVID-19 severity through modulation of host immune responses.

7.
Mol Cell Proteomics ; 22(6): 100561, 2023 Jun.
Статья в английский | MEDLINE | ID: covidwho-2307387

Реферат

The world has witnessed a steady rise in both non-infectious and infectious chronic diseases, prompting a cross-disciplinary approach to understand and treating disease. Current medical care focuses on treating people after they become patients rather than preventing illness, leading to high costs in treating chronic and late-stage diseases. Additionally, a "one-size-fits all" approach to health care does not take into account individual differences in genetics, environment, or lifestyle factors, decreasing the number of people benefiting from interventions. Rapid advances in omics technologies and progress in computational capabilities have led to the development of multi-omics deep phenotyping, which profiles the interaction of multiple levels of biology over time and empowers precision health approaches. This review highlights current and emerging multi-omics modalities for precision health and discusses applications in the following areas: genetic variation, cardio-metabolic diseases, cancer, infectious diseases, organ transplantation, pregnancy, and longevity/aging. We will briefly discuss the potential of multi-omics approaches in disentangling host-microbe and host-environmental interactions. We will touch on emerging areas of electronic health record and clinical imaging integration with muti-omics for precision health. Finally, we will briefly discuss the challenges in the clinical implementation of multi-omics and its future prospects.


Тема - темы
Genomics , Neoplasms , Humans , Genomics/methods , Proteomics/methods , Multiomics , Metabolomics/methods
8.
Comprehensive Gut Microbiota ; 2:442-458, 2022.
Статья в английский | Scopus | ID: covidwho-2290444

Реферат

The world is currently experiencing a major pandemic due to COVID-19, a disease caused by SARS-CoV-2 infection. This virus is highly transmissible and clinically presents with a wide range of manifestations. The microbiome has a profound effect on the development of host immunity and susceptibility to infection. In severe COVID-19 patients, alterations of the gut and lung microbiome were detected. Emerging evidence indicates bidirectional crosstalk through a gut-lung axis, in which microbial metabolites, such as short-chain fatty acids, play pivotal roles in human health. In this review we will discuss the gut and lung microbiome in health and during viral infection, with a focus on SARS-CoV-2 infection. © 2022 Elsevier Inc. All rights reserved.

9.
Microorganisms ; 11(4)2023 Apr 15.
Статья в английский | MEDLINE | ID: covidwho-2304811

Реферат

The composition of the gut microbiome stores the imprints of prior infections and other impacts. COVID-19 can cause changes in inflammatory status that persist for a considerable time after infection ends. As the gut microbiome is closely associated with immunity and inflammation, the infection severity might be linked to its community structure dynamics. Using 16S rRNA sequencing of stool samples, we investigated the microbiome three months after the end of the disease/infection or SARS-CoV-2 contact in 178 post-COVID-19 patients and those who contacted SARS-CoV-2 but were not infected. The cohort included 3 groups: asymptomatic subjects (n = 48), subjects who contacted COVID-19 patients with no further infection (n = 46), and severe patients (n = 86). Using a novel compositional statistical algorithm (nearest balance) and the concept of bacterial co-occurrence clusters (coops), we compared microbiome compositions between the groups as well as with multiple categories of clinical parameters including: immunity, cardiovascular parameters and markers of endothelial dysfunction, and blood metabolites. Although a number of clinical indicators varied drastically across the three groups, no differences in microbiome features were identified between them at this follow-up point. However, there were multiple associations between the microbiome features and clinical data. Among the immunity parameters, the relative lymphocyte number was linked to a balance including 14 genera. Cardiovascular parameters were associated with up to four bacterial cooperatives. Intercellular adhesion molecule 1 was linked to a balance including ten genera and one cooperative. Among the blood biochemistry parameters, calcium was the only parameter associated with the microbiome via a balance of 16 genera. Our results suggest comparable recovery of the gut community structure in the post-COVID-19 period, independently of severity or infection status. The multiple identified associations of clinical analysis data with the microbiome provide hypotheses about the participation of specific taxa in regulating immunity and homeostasis of cardiovascular and other body systems in health, as well as their disruption in SARS-CoV-2 infections and other diseases.

10.
World J Gastroenterol ; 29(11): 1708-1720, 2023 Mar 21.
Статья в английский | MEDLINE | ID: covidwho-2290749

Реферат

Coronavirus disease 2019 (COVID-19) infection caused by the severe acute respiratory syndrome coronavirus 2 virus, its symptoms, treatment, and post-COVID-19 effects have been a major focus of research since 2020. In addition to respiratory symptoms, different clinical variants of the virus have been associated with dynamic symptoms and multiorgan diseases, including liver abnormalities. The release of cytokines by the activation of innate immune cells during viral infection and the high doses of drugs used for COVID-19 treatment are considered major drivers of liver injury in COVID-19 patients. The degree of hepatic inflammation in patients suffering from chronic liver disease and having COVID-19 could be severe and can be estimated through different liver chemistry abnormality markers. Gut microbiota influences liver chemistry through its metabolites. Gut dysbiosis during COVID-19 treatment can promote liver inflammation. Here, we highlighted the bidirectional association of liver physiology and gut microbiota (gut-liver axis) and its potential to manipulate drug-induced chemical abnormalities in the livers of COVID-19 patients.


Тема - темы
COVID-19 , Gastrointestinal Microbiome , Liver Diseases , Probiotics , Humans , Gastrointestinal Microbiome/physiology , Probiotics/therapeutic use , COVID-19 Drug Treatment , Liver Diseases/metabolism , Inflammation , Dysbiosis/therapy
11.
Int J Environ Res Public Health ; 20(8)2023 04 07.
Статья в английский | MEDLINE | ID: covidwho-2293325

Реферат

An emerging area of research extends work on couple functioning and physical health to gut health, a critical marker of general health and known to diminish with age. As a foray into this area, we conducted a pilot study to (1) determine the feasibility of remote data collection, including a fecal sample, from older adult couples, (2) examine within-couple concordance in gut microbiota composition, and (3) examine associations between relationship functioning and gut microbiota composition. Couples (N = 30) were recruited from the community. The participants' demographic characteristics were as follows: M (SD) age = 66.6 (4.8), 53% female, 92% White, and 2% Hispanic. Two of the couples were same-sex. All 60 participants completed self-report measures and supplied a fecal sample for microbiome analysis. Microbial DNA was extracted from the samples, and the 16S rRNA gene V4 region was amplified and sequenced. The results indicated that individuals shared more similar gut microbial composition with their partners than with others in the sample, p < 0.0001. In addition, individuals with better relationship quality (greater relationship satisfaction and intimacy and less avoidant communication) had greater microbial diversity, p < 0.05, a sign of healthier gut microbiota. Further research with a larger and more diverse sample is warranted to elucidate mechanisms.


Тема - темы
Gastrointestinal Microbiome , Microbiota , Humans , Female , Aged , Male , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Pilot Projects , Feces
12.
Ann Hematol ; 102(6): 1589-1598, 2023 Jun.
Статья в английский | MEDLINE | ID: covidwho-2293303

Реферат

COVID-19 is characterized by a predominantly prothrombotic state, which underlies severe disease and poor outcomes. Imbalances of the gut microbiome have been linked with abnormal hemostatic processes. Understanding the relationship between the gut microbiome and abnormal coagulation parameters in COVID-19 could provide a novel framework for the diagnosis and management of COVID-related coagulopathies (CRC). This cross-sectional study used shotgun metagenomic sequencing to examine the gut microbiota of patients with CRC (n = 66) and compared it to COVID control (CCs) (n = 27) and non-COVID control (NCs) (n = 22) groups. Three, 1, and 3 taxa were found enriched in CRCs, CCs, and NCs. Next, random forest models using 7 microbial biomarkers and differential clinical characteristics were constructed and achieved strong diagnostic potential in distinguishing CRC. Specifically, the most promising biomarker species for CRC were Streptococcus thermophilus, Enterococcus faecium, and Citrobacter portucalensis. Conversely, Enterobacteriaceae family and Fusicatenibacter genus are potentially protective against CRC in COVID patients. We further identified 4 species contributing to 20 MetaCyc pathways that were differentially abundant among groups, with S. thermophilus as the main coding species in CRCs. Our findings suggest that the alterations of gut microbiota compositional and functional profiles may influence the pathogenesis of CRC and that microbiota-based diagnosis and treatment could potentially benefit COVID patients in preventing and alleviating thrombosis-related clinical outcomes.


Тема - темы
Blood Coagulation Disorders , COVID-19 , Gastrointestinal Microbiome , Microbiota , Humans , Cross-Sectional Studies , COVID-19/complications , Blood Coagulation Disorders/etiology
13.
J Nutr ; 153(4): 1178-1188, 2023 04.
Статья в английский | MEDLINE | ID: covidwho-2296850

Реферат

BACKGROUND: Diet, a key component of type 1 diabetes (T1D) management, modulates the intestinal microbiota and its metabolically active byproducts-including SCFA-through fermentation of dietary carbohydrates such as fiber. However, the diet-microbiome relationship remains largely unexplored in longstanding T1D. OBJECTIVES: We evaluated whether increased carbohydrate intake, including fiber, is associated with increased SCFA-producing gut microbes, SCFA, and intestinal microbial diversity among young adults with longstanding T1D and overweight or obesity. METHODS: Young adult men and women with T1D for ≥1 y, aged 19-30 y, and BMI of 27.0-39.9 kg/m2 at baseline provided stool samples at baseline and 3, 6, and 9 mo of a randomized dietary weight loss trial. Diet was assessed by 1-2 24-h recalls. The abundance of SCFA-producing microbes was measured using 16S rRNA gene sequencing. GC-MS measured fecal SCFA (acetate, butyrate, propionate, and total) concentrations. Adjusted and Bonferroni-corrected generalized estimating equations modeled associations of dietary fiber (total, soluble, and pectins) and carbohydrate (available carbohydrate, and fructose) with microbiome-related outcomes. Primary analyses were restricted to data collected before COVID-19 interruptions. RESULTS: Fiber (total and soluble) and carbohydrates (available and fructose) were positively associated with total SCFA and acetate concentrations (n = 40 participants, 52 visits). Each 10 g/d of total and soluble fiber intake was associated with an additional 8.8 µmol/g (95% CI: 4.5, 12.8 µmol/g; P = 0.006) and 24.0 µmol/g (95% CI: 12.9, 35.1 µmol/g; P = 0.003) of fecal acetate, respectively. Available carbohydrate intake was positively associated with SCFA producers Roseburia and Ruminococcus gnavus. All diet variables except pectin were inversely associated with normalized abundance of Bacteroides and Alistipes. Fructose was inversely associated with Akkermansia abundance. CONCLUSIONS: In young adults with longstanding T1D, fiber and carbohydrate intake were associated positively with fecal SCFA but had variable associations with SCFA-producing gut microbes. Controlled feeding studies should determine whether gut microbes and SCFA can be directly manipulated in T1D.


Тема - темы
COVID-19 , Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Female , Humans , Male , Young Adult , Acetates , Dietary Fiber/analysis , Eating , Fatty Acids, Volatile/analysis , Feces/chemistry , Fructose , Obesity , Overweight , RNA, Ribosomal, 16S/genetics
14.
Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases: Volume II: Kidney, Central Nervous System, Eye, Blood, Blood Vessels and Bowel ; 2:195-210, 2023.
Статья в английский | Scopus | ID: covidwho-2272465

Реферат

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system with astrocytopathy characteristics. Antibodies against aquaporin-4 water channels which are mainly located in astrocyte podocytes play an important role in NMOSD pathogenesis. Like other autoimmune disorders, it seems that both genetic and environmental factors are involved in NMOSD risk, but the role of environmental risk factors is more significant. Infections are known to be an effective factor not only in the incidence but also in the exacerbation of autoimmune diseases. In this chapter, the roles of microorganisms in two categories of viruses and bacteria in the pathogenesis and management of NMOSD patients are discussed. In this regard the relation between infection with tuberculosis, Helicobacter pylori, Epstein-Barr virus, SARS-CoV-2, varicella-zoster virus, dengue virus, cytomegalovirus, herpes simplex virus 2 and Zika virus, as well as gut microbiome and NMOSD occurrence are mentioned. On the other hand, susceptibility of NMOSD patients for developing infectious diseases due to receiving immunosuppressive drugs and the role of infection in NMOSD attack and disease exacerbation are outlined. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022.

15.
Current Traditional Medicine ; 9(3):28-43, 2023.
Статья в английский | EMBASE | ID: covidwho-2267482

Реферат

The mass casualties caused by the delta variant and the wave of the newer "Omicron" variant of SARS-COV-2 in India have brought about great concern among healthcare officials. The government and healthcare agencies are seeking effective strategies to counter the pandemic. The application of nanotechnology and repurposing of drugs are reported as promising approaches in the management of COVID-19 disease. It has also immensely boomed the search for productive, re-liable, cost-effective, and bio-assimilable alternative solutions. Since ancient times, the traditional-ly employed Ayurvedic bhasmas have been used for diverse infectious diseases, which are now employed as nanomedicine that could be applied for managing COVID-19-related health anomalies. Like currently engineered metal nanoparticles (NPs), the bhasma nanoparticles (BNPs) are also packed with unique physicochemical properties, including multi-elemental nanocrystalline compo-sition, size, shape, dissolution, surface charge, hydrophobicity, and multi-pathway regulatory as well as modulatory effects. Because of these conformational and configurational-based physico-chemical advantages, Bhasma NPs may have promising potential to manage the COVID-19 pandemic and reduce the incidence of pneumonia-like common lung infections in children as well as age-related inflammatory diseases via immunomodulatory, anti-inflammatory, antiviral, and adju-vant-related properties.Copyright © 2023 Bentham Science Publishers.

16.
Front Microbiol ; 14: 1111962, 2023.
Статья в английский | MEDLINE | ID: covidwho-2262530

Реферат

Sepsis has a high mortality rate, and treating sepsis remains a significant challenge worldwide. In former studies, our group found that traditional Chinese medicine, Shen FuHuang formula (SFH), is a promising medicine in treating coronavirus disease 2019 (COVID-19) patients with the septic syndrome. However, the underlying mechanisms remain elusive. In the present study, we first investigated the therapeutic effects of SFH on septic mice. To investigate the mechanisms of SFH-treated sepsis, we identified the gut microbiome profile and exploited untargeted metabolomics analyses. The results demonstrated that SFH significantly enhanced the mice's 7-day survival rate and hindered the release of inflammatory mediators, i.e., TNF-α, IL-6, and IL-1ß. 16S rDNA sequencing further deciphered that SFH decreased the proportion of Campylobacterota and Proteobacteria at the phylum level. LEfSe analysis revealed that the treatment of SFH enriched Blautia while decreased Escherichia_Shigella. Furthermore, serum untargeted metabolomics analysis indicated that SFH could regulate the glucagon signaling pathway, PPAR signaling pathway, galactose metabolism, and pyrimidine metabolism. Finally, we found the relative abundance of Bacteroides, Lachnospiraceae_NK4A136_group, Escherichia_Shigella, Blautia, Ruminococcus, and Prevotella were closely related to the enrichment of the metabolic signaling pathways, including L-tryptophan, uracil, glucuronic acid, protocatechuic acid, and gamma-Glutamylcysteine. In conclusion, our study demonstrated that SFH alleviated sepsis by suppressing the inflammatory response and hence reduced mortality. The mechanism of SFH for treating sepsis may be ascribed to the enrichment of beneficial gut flora and modulation in glucagon signaling pathway, PPAR signaling pathway, galactose metabolism, and pyrimidine metabolism. To sum up, these findings provide a new scientific perspective for the clinical application of SFH in treating sepsis.

17.
Microbiome ; 11(1): 46, 2023 03 09.
Статья в английский | MEDLINE | ID: covidwho-2256593

Реферат

BACKGROUND: Infections with SARS-CoV-2 have a pronounced impact on the gastrointestinal tract and its resident microbiome. Clear differences between severe cases of infection and healthy individuals have been reported, including the loss of commensal taxa. We aimed to understand if microbiome alterations including functional shifts are unique to severe cases or a common effect of COVID-19. We used high-resolution systematic multi-omic analyses to profile the gut microbiome in asymptomatic-to-moderate COVID-19 individuals compared to a control group. RESULTS: We found a striking increase in the overall abundance and expression of both virulence factors and antimicrobial resistance genes in COVID-19. Importantly, these genes are encoded and expressed by commensal taxa from families such as Acidaminococcaceae and Erysipelatoclostridiaceae, which we found to be enriched in COVID-19-positive individuals. We also found an enrichment in the expression of a betaherpesvirus and rotavirus C genes in COVID-19-positive individuals compared to healthy controls. CONCLUSIONS: Our analyses identified an altered and increased infective competence of the gut microbiome in COVID-19 patients. Video Abstract.


Тема - темы
COVID-19 , Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , SARS-CoV-2/genetics , Multiomics
18.
Nutrients ; 15(6)2023 Mar 21.
Статья в английский | MEDLINE | ID: covidwho-2281386

Реферат

Plant-based diets have grown increasingly popular across the globe, mainly for their health and environmental benefits. Several studies have identified a link between plant-based diets and the decreased risk of developing cardiovascular diseases, obesity, and other health issues. We systematically reviewed human interventions to identify the relationship between various plant-based food items and the gut microbiome, alongside the biochemical and anthropometric measurements as secondary findings. The study selection process was completed using the COVIDENCE platform. Overall, 203 studies were identified, of which 101 were chosen for title and abstract screening by two independent authors. Following this process, 78 studies were excluded, and the full texts and the reference lists of the remaining 23 records were reviewed using the review eligibility criteria. A manual search yielded five additional articles. In the end, 12 studies were included in the systematic review. We found evidence for short- to moderate-term beneficial effects of plant-based diets versus conventional diets (duration ≤ 13 months) on gut microbiome composition and biochemical and anthropometric measurements in healthy participants as well as obese, cardiovascular, and rheumatoid arthritis patients. However, contradictory results were observed for Enterobacteriaceae, at the family level, and for Faecalibacterium and Coprococcus, at the genus level, of gut microbiome composition. The relationship between plant-based diets and the gut microbiome, alongside their underlying metabolic and inflammatory effects, remains largely unexplored. Hence more interventional studies are needed to address these questions.


Тема - темы
Cardiovascular Diseases , Gastrointestinal Microbiome , Humans , Diet , Obesity , Cardiovascular Diseases/prevention & control , Diet, Vegetarian
19.
J Med Virol ; 95(4): e28691, 2023 04.
Статья в английский | MEDLINE | ID: covidwho-2270695

Реферат

Populations of different South Asian nations including Bangladesh reportedly have a high risk of developing diabetes in recent years. This study aimed to investigate the differences in the gut microbiome of COVID-19-positive participants with or without type 2 diabetes mellitus (T2DM) compared with healthy control subjects. Microbiome data of 30 participants with T2DM were compared with 22 age-, sex-, and body mass index (BMI)-matched individuals. Clinical features were recorded while fecal samples were collected aseptically from the participants. Amplicon-based (16S rRNA) metagenome analyses were employed to explore the dysbiosis of gut microbiota and its correlation with genomic and functional features in COVID-19 patients with or without T2DM. Comparing the detected bacterial genera across the sample groups, 98 unique genera were identified, of which 9 genera had unique association with COVID-19 T2DM patients. Among different bacterial groups, Shigella (25%), Bacteroides (23.45%), and Megamonas (15.90%) had higher mean relative abundances in COVID-19 patients with T2DM. An elevated gut microbiota dysbiosis in T2DM patients with COVID-19 was observed while some metabolic functional changes correlated with bidirectional microbiome dysbiosis between diabetes and non-diabetes humans gut were also found. These results further highlight the possible association of COVID-19 infection that might be linked with alteration of gut microbiome among T2DM patients.


Тема - темы
COVID-19 , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Diabetes Mellitus, Type 2/complications , Cross-Sectional Studies , RNA, Ribosomal, 16S/genetics , Dysbiosis/microbiology , Bangladesh/epidemiology , SARS-CoV-2/genetics , Bacteria/genetics
20.
Asian Pac Isl Nurs J ; 6(1): e39760, 2022.
Статья в английский | MEDLINE | ID: covidwho-2250895

Реферат

Asians are one of the fastest-growing racial groups in the United States. The mental health of Asian Americans, particularly regarding depression and anxiety, needs significant attention. Various biopsychosocial factors interact to influence the risks of depression, anxiety, and sleep quality among Asian Americans. Currently, multiple methodological issues exist in the research of Asian Americans, such as limited data collection using Asian languages and inconsistent reporting of race and ethnicity data, which may be lacking entirely. All these methodological issues in research may account for the seemingly low prevalence rates of mental health problems among Asian Americans. In our study on mental health and sleep quality among Chinese and Korean Americans, we adopted multiple data collection strategies during the COVID-19 pandemic, including using culturally adaptive and validated measures as well as operating culture-sensitive procedures in the recruitment and data collection. The successful use of these strategies could promote early detection and personalized treatment of depression, anxiety, and sleep disturbance among Asian Americans. These strategies would further improve health care service use in this population. International Registered Report Identifier IRRID: RR2-10.1136/bmjopen-2020-047281.

Критерии поиска